

CCS POSSIBILITIES AT SC ACHEMA

- EU set Green Deal direction with an ambitious target to become carbon neutral by 2050
- As an intermediate step some proposals now are considered under Fit for 55 plan (still under Trialog) :
 - 1. Reduce CO_2 emission by a minimum of 55% until 2030
 - 2. RED II directive 50% of the hydrogen used by industry must be green by 2030
- During yaer 2026 2032 all CO₂ free allowances will phase out as per CBAM regulation
- Current EUA price reaches 80-90 Eur/ton with future forecasts to reach 150 Eur/ton and more
- The philosophy of that is THE INDUSTRY OF EU WILL BECOME LEADER IN BRAKE THROUGH
 DECARBONISATION TECHNOLOGY

Challenges of CCS projects for SC Achema

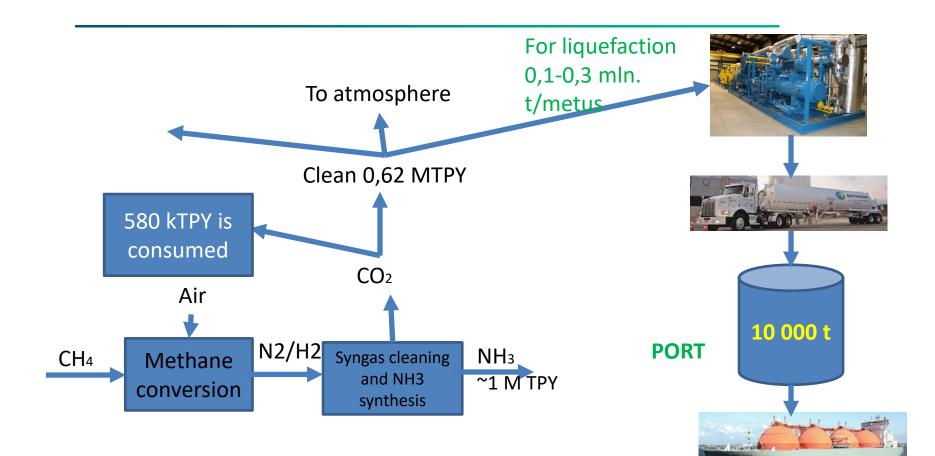
- Sustainability of CCS technology in the European region
- Development of required capacities to reasonably support decarbonisation
- SC Achema has to go for big scale CCS project to achieve significant impact (i.e. 0,5-1 MTPY)
- Logistics of high quantities of CO2 is a challenge by itself.
- CO2 related investments decrease competitiveness in World Market
- Reasonable combination of CCS with other decarbonization possibilities
- Absence of sustainable technology for decarbonization of ammonia production process
- Possibility of political influence (MSR and other)

- Working at full capacity SC Achema emits about 2 500 000 tons per year of CO₂
- For about 2 000 000 TPY ammonia production is responsible, 300 000 TPY nitic acid production and 200 000 TPY cogeneration power plant
- About 120 000 TPY out of 2 500 000 is indirect CO₂ emission recalculated from N₂O emitted during nitric acid production
- About 1 180 000 TPY out of 2 500 000 is CO₂ emission from flue gas as a result of burning natural gas at ammonia, nitric acid and power plant facilities.
- Rest 1 200 000 TPY out of 2 500 000 CO₂ is pure CO₂ emitted from ammonia plants as a result of using natural gas as feedstock for hydrogen.
- Out of 1 200 000 TPY of pure CO₂ about 530 000 TPY is consumed for urea production and 50 000 TPY is sold as a CO₂ product (dry ice, liquified or compressed), the rest 620 000 TPY is vented.

- First possibility is to capture 620 000 TPY of pure CO_2 stream.
- We already have experience with operating two 100 TPD and 90 TPD CO₂ liquefaction units. No technological challenges
- First project could be 100 000 200 000 TPY CO₂ capture
- Capturing CO₂ from the flue gas stream is more complicated. Usually, amine absorption/desorption systems are used. Low pressure, high energy demand, large investments, as well as very low references, are the limiting factors.

- Currently CO₂ storage in Lithuania is prohibited. Biggest potential to store CO₂ in Lithuania is by mineralization (bonding with rocks), but such process is not mature.
- SC Achema must find CO₂ storage partner to cooperate with. The nearest geographical possibility is at North sea fields. Possible partner Equinor – Northern Lights Project. Maybe in the future some locations in Baltic sea will be discovered.
- Logistic chain with storage tanks at Achema and at Klaipeda port, transportation fleet of trucks or trains must be organized.
- Final CCS price including capturing, liquefaction, transportation and storage should be less than ETS price for the project to be viable.
- Few kTons of CO2 were sold to "Minijos Nafta" for the EOR needs.

- In 2008 the potential of geological formations for CO₂ sequestration in Lithuania was made.
- No CO₂ storage potential as structural trapping in Lithuania. The structures known in Lithuania are too small.
- Great potential for solubility trapping of CO₂. Further considerations must be allowed to accept this technology as an alternative.
- Theoretical potential for mineral trapping. It is a much safer technology in comparison to other technologies but unacceptably expensive.
- A possibility of storage of CO₂ in Latvia should be discussed. Baltic See case would benefit the economy
- The main potential for Europe for CO_2 storage seems to be concentrated in North Sea area.


The Hydrogen Colour Spectrum

Colour	Fuel	Process	Products
Brown/Black	Coal	Steam reforming or gasification	$H_2 + CO_2$ (released)
White	N/A	Naturally occurring	H ₂
Grey	Natural Gas	Steam reforming	$H_2 + CO_2$ (released)
Blue	Natural Gas	Steam reforming	H ₂ + CO _{2 (%} captured and stored)
Turquoise	Natural Gas	Pyrolysis	$H_2 + C_{(solid)}$
Red	Nuclear Power	Catalytic splitting	$H_2 + O_2$
Purple/Pink	Nuclear Power	Electrolysis	$H_2 + O_2$
Yellow	Solar Power	Electrolysis	$H_2 + O_2$
Green	Renewable Electricity	Electrolysis	H ₂ + O ₂

Potential pilot project logistics scheme

9

European Funds and investments for pilot project

- Green hydrogen and renewable electricity are supported by most funds but not all of them support blue hydrogen and CCS.
- Only Innovation Fund fully supports CCS technologies development.
- Horizon Europe, CEF TEN-E, Modernisation Fund and Interreg Europe only partially support CCS.
 Note that no previous awards or funding an area compatible with Achema's interests.
- Liquefaction of 300 t/day CO_{2.} 100 000 TPY.
- Liquefaction unit price €15M.
- Liquid CO₂ 10 000 t warehouse in port and infrastructure €20M.
- Total investments ~€35M.

CCS Economy

Carbon permits price	€70	€124	€70
	Without funding	Without funding	<43% CAPEX and OPEX funding
	Revenue/costs €/t CO₂	Revenue/costs €/t CO ₂	Revenue/costs €/t CO ₂
Savings on carbon permits	€ 70	€ 124	€70
Amortization (8y.)	-€ 44	-€ 44	-€ 25
Transport to port	-€ 50	-€ 50	-€ 29
Sequestration	-€ 20	-€ 20	-€ 11
Operating cost for liquefaction	-€ 10	-€ 10	-€ 5
Balance 1t CO ₂	-€ 54	€0	€0

Commercial CCS facilities and projects

- There are a lot of small-scale CCS operational facilities around the globe. The oldest operates since 1972 in Terrell Natural Gas Processing Plant (USA). It captures 0,4 – 0,5 Mtpa.
- The biggest operational CCS facilities are in Brazil 4,6 Mtpa, Australia 3,4 4 Mtpa and US 1 3 Mtpa.
- In Europe the projects are still developing. Some of them are in construction already. For example, Norcem Brevik – Cement Plant in Norway should capture and store 0,4 Mtpa.
- Also, there are already developed CCS networks. Most of them are through pipelines. They are located in Norway, Scotland, England, Belgium, The Netherlands, Italy, Canada, UAE, USA, Australia, Canada, and China.

- CCS is acceptable intermediate technology to decrease CO₂ emissions.
- SC Achema is ready to capture 100 000 300 000TPY, with the future increase to 600 000 TPY.
- SC Achema must find a CO_2 storage partner to cooperate with.
- Financial viability is a key decision-maker for the project.
- Support from the government is crutial.
- More funds should support blue hydrogen and CCS.
- Further CO₂ sequestration options must be investigated.